
Preserving TCP Connections Across Host

Address Changes

Vassilis Prevelakis1, Sotiris Ioannidis2

1 Computer Science Department, Drexel University,
Philadelphia, PA 19104, USA

2 Computer Science Department, Stevens Institute of Technology,
Hoboken, NJ 07030, USA

Abstract. The predominance of short-lived connections in today’s In-
ternet has created the perception that it is perfectly acceptable to change
a host’s IP address with little regard about established connections. In-
deed, the increased mobility offered by laptops with wireless network
interfaces, and the aggressive use of short DHCP leases are leading the
way towards an environment where IP addresses are transient and last
for short time periods. However, there is still a place for long-lived con-
nections (typically lasting hours or even days) for remote login sessions,
over the network backups, etc. There is, therefore, a real need for a sys-
tem that allows such connections to survive changes in the IP addresses
of the hosts at either end of the connection.

In this paper we present a kernel-based mechanism that recognizes ad-
dress changes and recovers from them. Furthermore, we discuss the se-
curity implications of such a scheme, and show that our system provides
an effective defense against both eavesdropping and man-in-the-middle
attacks.

1 Introduction

Applications based on the Internet Protocols generally assume that the address
of a given node remains the same over long periods of time. Long term con-
nections, especially those that use connection-oriented protocols such as TCP,
rely on this assumption to allow connections that may “last months” and can
even survive temporary disruptions to the network. The assumption of address
immutability is, however, increasingly difficult to sustain. Mobile nodes (e.g.,
laptops, phones, PDAs, etc.) can change addresses as they move from one net-
work to another, but even fixed nodes connected to the Internet via dial-up or
DSL link have addresses that change every time their connection is reset. In some
cases ISP’s initiate such address changes to force users that need a permanent
(static) IP address to pay for one. Unfortunately, established connections (e.g.,
ssh sessions) do not survive the address change, because they rely on fixed source
and destination IP addresses. In order to protect these connections when one of
the endpoints gets a new IP address, some kind of mechanism is required to allow



both ends of the connection to update the addresses associated with that con-
nection, or to continue using their initial addresses through address translation
or tunnels.

In this paper we examine various techniques that have been proposed to
address this problem and describe a new technique based on “redirects.” We
also discuss the security implications of the use of such mechanisms and propose
a novel technique that prevents third parties from hijacking connections.

2 Connection Redirection

To better understand the redirect protocol, consider the following scenario shown
in Figure 1 where the communication between two hosts is disrupted because
the IP address of one of the hosts changes.

Fig. 1. When Bob acquires a new IP address, all established connections with Alice
will be lost.

Assume two hosts, Alice and Bob. with IP addresses IPA and IPB respec-
tively. Initially, Alice and Bob establish a TCP connection and communicate
normally. At some stage in the communication, Bob is forced to acquire a new
IP address (IP

′

B
). At that point if Alice sends a packet to Bob’s original address,

IPB , she will either get an ICMP error (e.g., ADDRESS UNREACHABLE), or
the packet will be lost (silently). Moreover, if another host has grabbed IPB ,
Alice will get a TCP RST. In the first and last cases Alice will immediately



know that the connection has been lost and she will tear down her side of the
connection, but in the second case Alice will have to wait until the connection
times out.

In every case, the connection will be lost and will have to be reestablished.
To retain the connection, both sides must update the state of the IP tables in the
network stack, changing all instances of IPB to IP

′

B
. Since Bob knows that his

address has changed, he can effect the local changes, but he also has to inform
Alice via an Address Change Message (ACM, shown in Figure 2), so that she
can update her network state.

Fig. 2. Format of the Address Change Message.

The ACM may affect all established TCP connections between Bob and Alice
causing all applicable network stack entries to be updated. Alternatively, it may
apply only to a specific TCP connection. In the latter case Bob will need to send
individual ACMs for every TCP connection between himself and Alice.

While the above protocol can be used to redirect TCP connections one has
to be sure that this mechanism cannot be used to hijack existing connections.
Specifically, the protection mechanism must address both packet injection at-
tacks and data modification attacks.

Packet Injection A packet injection attack is one where an attacker sends a
specially crafted ACM causing an existing connection to be redirected to a host
controlled by the attacker. This attack is facilitated by the ability of the attacker
to eavesdrop on the communication channel and, hence, is particularly likely in
wireless networks where it is trivial to monitor network traffic.

To protect against such attacks, we can either use some pre-arranged secret
to guard the ACM, or use sequence numbers that the attacker is unlikely to
guess (unless, of course, the attacker is able to monitor the traffic). The extent
to which we want to protect hosts from redirect attacks will define which defence
mechanism one should use. Understanding the specific types of packet injection
attacks will help us form protection guidelines.

The ability to eavesdrop on the communication opens additional avenues of
attack such as replay attacks whereby the attacker records an earlier exchange
involving an ACM and reuses it to acquire a connection at some point in the
future. In order to understand this attack consider the following scenario.

In a LAN where address assignment is handled via DHCP, the attacker can
trigger an address change on a host causing it to emit an ACM message. A
further address change will cause the victim host to move to a different IP



address allowing the attacker to use the original ACM to redirect traffic back to
the freshly released address.

Data Modification In a man-in-the-middle scenario, the attacker is able to
inspect and modify packets exchanged between the two communicating parties.
While this attack is harder to carry out in general, if the attacker is in the same
LAN as the victim, ARP spoofing can be used to allow traffic to flow through
the attacker.

To appreciate the difficulty of countering data modification attacks, consider
the use of a shared secret to protect the ACM. If the secret is sent during the
current session, the attacker will be able to intercept it and modify it. Thus, the
two parties must exchange the secret ahead of time, or use a trusted third party
to introduce them to each other.

2.1 Global versus local redirects

When redirecting connections we can opt to send a single redirect request which
applies to all active sessions between the two hosts, or send ACMs for each
connection separately.

By using individual ACMs for each connection we leverage TCP’s sequence
numbers in order to ensure that the connection is unlikely to be hijacked be-
cause the attacker must guess not only the source and destination ports, but the
sequence number as well. If the attacker cannot eavesdrop on the connection,
they are unlikely to be able to guess the correct combination or even to mount
a brute-force attack by trying all possible combinations due to the size of the
search space.

For global redirects we can use a token established at the beginning of the
session to authenticate the redirect request. This token can be a 32-bit or 64-bit
quantity sent in the original connection request packet. Either side can use that
token if it needs to send a redirect packet.

Neither of the two solutions above address the problem of an eavesdropping
attacker. Of course, if an attacker is able to monitor the traffic on a connection,
he or she will be able to mount a great variety of attacks against that session
(including message injection). However, it may not be acceptable to allow the
attacker to redirect the entire session.

A good way to address this problem is not to send the token in the clear
but to use Diffie Hellman exchange to establish a token, known by both sides
but unavailable to a potential eavesdropper. [17] The DH exchange, however
introduces extra overhead, is vulnerable to a man in the middle attack and may
allow an attacker to mount a denial of service attack on either side by forcing
them to perform repeated DH exchanges.

We have addressed these issues with a two level technique that (a) limits
the expensive negotiation to long-lived sessions and (b) allows information from
previous sessions to be used to enhance the level of security and resist man-in-
the-middle attacks as well. The latter technique is similar to the authentication



mechanism employed by ssh, that is to transfer the host key when the first con-
nection between the two hosts is made. Moreover, since the authentication pro-
cedure involves the two hosts and not the individual connections we can further
reduce overheads by allowing one redirect message to affect all the connections
between the two hosts.

3 Design Considerations

We have developed a prototype to test our methods and provide feedback on the
efficacy of the various techniques described the previous section. It is important
to observe here that we are primarily concerned with authentication and, as we
shell see later, data integrity; privacy is not our concern and hence we avoid
encryption and its associated overhead. Existing systems such as ssh or TLS
may be used as needed to satisfy privacy requirements.

3.1 Initial Key Exchange

As we have seen above, in order to construct a system which is resistant to both
data monitoring (eavesdropping) and man-in-the-middle attacks, we need to set
up a session key. This is done as part of the initial TCP/IP handshake (Figure 3).

Fig. 3. Session key agreement between parties that know each other. Alice sends her
ID along with a nonce to Bob. Bob uses the ID to find Alice’s key and then responds
with his ID along with the hashed value of the nonce along with their two keys.

Assuming that Alice and Bob have met before, they already know each other’s
secret key. This is used in the negotiation for the session key. Note that Bob does
not have a single key that he gives to all his friends, but rather maintains a list
in the form:



IDA KA KB timestamp

The reason is that if hosts always use the same key for all their transactions,
a malicious host M could contact Alice to get her key and then contact Bob to
get his key and thus be in a position to impersonate either one. We prefer this
method of authentication as opposed to using public key cryptography because
our method is vastly cheaper in terms of CPU requirements.

The timestamp field is used to indicate the last time the host was contacted
to allow for pruning of the list to avoid maintaining old and potentially useless
information.

3.2 First contact

If Alice and Bob have never met before, or if either host has purged the key
information from its database, they will need to exchange keys. This operation
is not performed by the kernel, as it involves a lot of operations that are better
done in user-land.

We have modified the network code in the OpenBSD kernel to call an appli-
cation (keyserv) during the initial stages of the session key exchange (Figure 4).
The keyserv program maintains a table with known hosts so that the storage
and management of these keys may be managed by the user.

Fig. 4. When an ACM-aware connection is initiated, the kernel asks a user-level ap-
plication to carry out the session key negotiation.

3.3 Short versus Long lived connections

Based on typical TCP/IP connection lifetimes we observe that a great many con-
nections are short lived, and do not require the use of our mechanism. For such
connections we should not attempt to use our mechanism to avoid burdening the
end-systems with the associated overhead. But how can we determine whether a



connection is likely to require the use of the connection redirection system? Ini-
tially we based our decision on the service (i.e.,we activated our protocol based
on the port used for the connection). This allowed us to use the mechanism for,
say, ssh connections, but not http. This approach assumes that we have a good
understanding of the type of services in use, the use various ports used and that
each service can be nicely categorized as short- or long-lived.

So we looked for a more flexible mechanism and we ended up using the
following heuristic: if a connection lasts longer than 10 seconds, it is likely to
be a long-lived connection. We, therefore, arrived at the state model shown in
Figure 5.

Fig. 5. State diagram showing the activation of the address redirection system.

Initially the host is Idle (no connections). When a remote host connects, we
start a 10 second timer. Before the timer expires, we treat the connection as a
short-lived one, so that if an address change occurs, the connection is dropped.
Assuming that the connection is still up when the timer expires, we establish the
redirect key and enter the “long-lived” state where our mechanism can be used to
recover from address changes. This technique allowed us to reduce overheads and
yet has proven to be extremely accurate in predicting the long-lived connections.

3.4 Data Integrity

In RFC-2385 [9] the authors suggest that BGP sessions can be protected through
the use of MD5 hashes. The proposed technique involves calculating the hash of
the packet to which we have appended a “password.”



Redirect

Application

Kernel Space

Redirect Daemon

Library

User Space

open(), close(),
read(), write(),

/dev/redirect

ioctl()Network SysCalls

Network

Filtering Routines

Fig. 6. Block diagram of the redirect implementation. IP addresses are modified on
the fly using filtering routines to maintain the network connections.

In our system we can do something similar using the session key as pass-
word and utilizing a more secure algorithm instead of MD5 (see discussion by
Dobbertin [7] on the problems with the MD5 hash). This scheme will enhance
the typical TCP session with integrity checks (but will not provide privacy) at
a very small overhead, since we have already carried out the key establishment
negotiation. Since this integrity support is available to long-lived sessions, it is
activated after the timer expires (see Figure 5 above).

4 Implementation

We implemented the redirect architecture under OpenBSD 3.6 [1] as a proof of
concept. Our implementation consists of three components: (1) a set of kernel
extensions, that are responsible for locating and enabling the modification of
IP addresses dynamically in the kernel; (2) a user-level daemon process, which
implements the redirect monitoring system; and (3) a device driver, which is used
to modify the IP data structures according to the requirements of the redirect
monitor. Our prototype is very lightweight, consisting of a few hundred lines of
C code.

Figure 6 shows a graphical representation of the system, with all its compo-
nents. The core of the redirect mechanism lives in kernel space and is comprised
of the filtering routines and the device driver. The redirect monitoring engine
lives in user space, inside the redirect daemon process. Any incoming or outgoing
IP packets go through the filter and are subject to possible redirect.

Kernel Extensions We implemented a set of kernel extensions to permit to mod-
ify the Protocol Control Block of existing network connections. This functionality



is supported by two operations: search pcb and modify pcb. More specifically,
we search all the Protocol Control Blocks for connections of interest and then
we modify them accordingly. In the case of a local IP address change, we need
to modify the source address of every existing connection. Whereas in the case
of a remote IP address change, we only need to modify existing connections to
that remote host.

Redirect Device To maximize the flexibility of our system and allow for easy
experimentation, we decided to make the redirect daemon a user level pro-
cess. To support this architecture, we had to implement a pseudo device driver,
/dev/redirect, that serves as a communication path between the user–space
redirect daemon, and the IP packet redirect engine in the kernel. Our device
driver, implemented as a loadable module, supports the usual operations (open(2),
close(2), read(2), write(2), and ioctl(2)).

struct redirect_request {

int local_or_remote;

in_addr_t oldIPaddress, newIPaddress;

};

for (ever) {

if (IP local address change) {

update Protocol Control Block with new source IP address

for (every existing connection)

notify remote redirect daemons

} else if (IP remote address change) {

update Protocol Control Block with new destination

IP address

}

}

Fig. 7. Pseudocode of redirect daemon.

Redirect Daemon The last component of our system is the redirect daemon. It
is a user-level process responsible for making decisions on whether to redirect IP
packets or not. These decisions are based on the changes of the host IP address.

The redirect daemon continuously monitors the network interface for IP ad-
dress changes. When it detects a change it starts executing the protocol described
in Section 3. The redirect daemon of the host that experienced the IP address
change, communicates with the redirect daemon of all the network hosts it has
established connections to notify them of the IP address change. It then issues
a call to the redirect device driver to update the in-kernel Protocol Control
Block tables of the existing connections with the new IP address. Similar up-
date actions are taken by the remote redirect daemons upon the receipt of the
notification (see Figure 7).



5 Related Work

The problem of maintaining existing connections when the IP address changes
is not unique to home networks. As with cell phone networks, Mobile IP (MIP)
systems have to address the problem of “handoff” i.e., what happens if the cell
phone or mobile PC moves from one area to another [16].

However, MIP systems must also satisfy additional requirements related to
the roaming nature of mobile users. In particular, what happens whenever a
mobile PC remains disconnected from the network for a significant amount of
time (e.g., during a long flight, or over the weekend) [18]. Another issue is how
to ensure that other computers can establish connections to the mobile PC while
it moves from network to network.

5.1 Forwarding Node

These problems necessitate the use of a forwarding node that has a fixed IP
address [3, 5, 6]. The mobile PC contacts the forwarding node in order to send
and receive packets. A popular way of handling this transparently is via an
overlay network: the mobile PC establishes a tunnel with the forwarding node
and sends all packets over the tunnel (i.e., the tunnel is designated the default
route), while the forwarding node performs NAT on the packets using the tunnel.
Other hosts think that packets from the mobile PC originate from the forwarding
host due to the use of NAT, while incoming packets are sent over the tunnel to
the mobile PC. Packets flow though the tunnel oblivious to the changes of the
IP address of the mobile PC.

We have a similar setup in operation for almost 8 years. The forwarding
station is an OpenBSD machine connected to the network, while the “mobile
PCs” are located in home networks connected via DSL or cable modems. The
home networks use an embedded system (running a special version of OpenBSD
that boots off a compact flash memory device) acts as an integrated firewall and
VPN gateway [15, 14].

We use IPsec in tunnel mode to implement the overlay network (Figure 8).
Our recent implementation based on OpenBSD 3.0 has been in continuous op-
eration for almost three years (1022 days uptime) demonstrating that sessions
can survive even migrations between ISPs (Verizon DSL to Comcast cable).

However, the overlay network technique has two major limitations: one is
that it requires a forwarding node with a fixed, globally unique IP address, and
the other is that packets always have to take a detour via the forwarding station
in order to reach hosts in the Internet. The latter both increases latency and
leaves the system vulnerable to failures in the forwarding node, the network
hosting the forwarding node, or the transit networks linking the mobile PC to
the forwarding node [2].

While these issues may be acceptable in the case of a truly mobile PC, we
do not believe that they are acceptable in a home setting, where the end-user
is unlikely to be willing to shoulder the cost of the forwarding station or the
latency imposed by the detour to the forwarding node.



Fig. 8. The overlay network hides changes in the external addresses of the gateway
hosts. Internal hosts (Bob and Alice) can use their own addresses all the time.

5.2 Proxy-based systems

Another way to handle address changes is to use a common rendezvous host
[3, 19, 8]. Both sides connect to the third part that has a fixed address. In this
way even if one or even both hosts change addresses, they can locate each other
via the common host. This technique is used mainly by voice telephony (VoIP)
applications. Such applications also have the added benefit of using connection-
less protocols allowing much flexibility in dealing with address changes.

5.3 Mobile IPv6

The design of IPv6 has created a special address class (link-local addresses)
within the huge available address space. Link-local addresses are not routable,
but are unique and serve to identify a host within a LAN. Though the use of
tunneling, hosts can communicate using their link-local addresses and hence be
immune to address changes in the intervening network. A special mechanism
based on two new destination option fields within packets (binding update and
binding acknowledgement) are used to facilitate the updates to the tunnels [13,
12, 4, 10, 11].

6 Conclusions

We have presented a system that allows TCP connections to survive addresses
changes in the communicating hosts. Our system is designed to allow existing
connections to be migrated to new IP addresses without the knowledge or coop-
eration of the application. Under our system, when an address change occurs, all
instances of the original IP address in the kernel IP tables, are dynamically re-
placed with the new address. Remote systems that have established connections
are also notified so that they can update their own data structures.

Recognizing that without adequate safeguards this procedure would create
serious security problems, we have implemented a comprehensive security mech-
anism that protects connections from hijacking even against man-in-the-middle
attacks.



Care has been taken to minimize the costs associated with this mechanism,
both by reducing the computational overheads and by deferring the expensive
cryptographic operations until we are reasonably sure that the connection is in
fact long-term and can, therefore, benefit from our services. Another benefit of
our approach is that having carried out the necessary mutual authentication
between the two hosts, we can use this information to provide integrity checking
of the connection with almost negligible overhead. We believe that our system
combines efficiency and utility and we would like to see it become a standard
feature of all IP-based systems.

Acknowledgements This work was supported in part by the National Science
Foundation under grants ANI-0133537, DUE-0417085 and CCR-0331584.

References

1. The OpenBSD Operating System. http://www.openbsd.org/.
2. N. Aghdaie and Y. Tamir. Client-Transparent Fault-Tolerant Web Service. In

Proceedings of the 20th IEEE International Performance, Computing, and Com-
munications Conference, April 2001.

3. I. F. Akyidiz. Mobility Management in Current and Future Communications Net-
works. IEEE Network, 12(6):39–49, July/August 1998.

4. P. Bhagwat and C. Perkins. A Mobile Networking System based on Internet Pro-
tocol (IP). In Proceedings of USENIX Symposium on Mobile and Location Inde-
pendent Computing, pages 69–82, August 1993.

5. A. T. Campbell, J. Gomez, S. Kim, Z. Turanyi, and C. Y. Wan. Comparison of IP
Micromobility Protocols. IEEE Wireless Communications, pages 72–82, February
2002.

6. A. T. Campbell, J. Gomez, S. Kim, Z. Turanyi, C. Y. Wan, and A. G. Valko. Design,
Implementation and Evaluation of Cellular IP. In IEEE Personal Communications,
Special Issue on IP-based Mobile Telecommunications Networks, June/July 2000.

7. H. Dobbertin. The Status of MD5 After a Recent Attack. RSA Labs’ CryptoBytes,
2(2), Summer 1996.

8. D. Funato, K. Yasuda, and H. Tokuda. TCP-R: TCP mobility support for con-
tinuous operation. In IEEE International Conference on Network Protocols, pages
229–236, October 1997.

9. A. Heffernan. RFC 2385: Protection of BGP Sessions via the TCP MD5 Signature
Option. Request for Comments, Internet Engineering Task Force, August 1998.

10. John Ioannidis, Dan Duchamp, and Gerald Q. Maguire Jr. IP-Based Protocols
for Mobile Internetworking. In Proceedings of SIGCOMM, pages 235–245. ACM,
September 1991.

11. John Ioannidis. Protocols for Mobile Internetworking. PhD thesis, Columbia Uni-
versity in the City of New York, 1993.

12. D. Jonhson and C. Perkins. Mobility Support in IPv6. Internet Draft, Internet
Engineering Task Force, July 2001. Work in progress.

13. C. Perkins. RFC 2002: IP Mobility Support. Request for Comments, Internet
Engineering Task Force, October 1996.

14. Vassilis Prevelakis and Angelos Keromytis. Designing an Embedded Firewall/VPN
Gateway. In Proceedings of the International Network Conference, 2002.



15. Vassilis Prevelakis and Angelos Keromytis. Drop-in Security for Distributed and
Portable Computing Elements. Journal of Internet Research, 13(2), 2003.

16. P. Stuckman. The GSM Evolution. Wiley, 2003.
17. Gong Su. MOVE: Mobility with Persistent Network Connections. PhD thesis,

Columbia University, New York, New York, 2004.
18. R. Zhang, T. F. Abdelzaher, and J. A. Stankovic. Efficient TCP Connection

Failover in Web Server Clusters. In Proceedings of IEEE InfoCom, March 2004.
19. S. Zhuang, K. Lai, I. Stoica, R. Katz, and S. Shenker. Host Mobility using an

Internet Indirection Infrastructure. In First International Conference on Mobile
Systems, Applications, and Services (ACM/USENIX Mobisys), May 2003.


